Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377293

RESUMO

Synchronization holds a significant role, notably within chaotic systems, in various contexts where the coordinated behavior of systems plays a pivotal and indispensable role. Hence, many studies have been dedicated to investigating the underlying mechanism of synchronization of chaotic systems. Networks with time-varying coupling, particularly those with blinking coupling, have been proven essential. The reason is that such coupling schemes introduce dynamic variations that enhance adaptability and robustness, making them applicable in various real-world scenarios. This paper introduces a novel adaptive blinking coupling, wherein the coupling adapts dynamically based on the most influential variable exhibiting the most significant average disparity. To ensure an equitable selection of the most effective coupling at each time instance, the average difference of each variable is normalized to the synchronous solution's range. Due to this adaptive coupling selection, synchronization enhancement is expected to be observed. This hypothesis is assessed within networks of identical systems, encompassing Lorenz, Rössler, Chen, Hindmarsh-Rose, forced Duffing, and forced van der Pol systems. The results demonstrated a substantial improvement in synchronization when employing adaptive blinking coupling, particularly when applying the normalization process.

2.
Math Biosci Eng ; 20(10): 17849-17865, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38052539

RESUMO

The significance of discrete neural models lies in their mathematical simplicity and computational ease. This research focuses on enhancing a neural map model by incorporating a hyperbolic tangent-based memristor. The study extensively explores the impact of magnetic induction strength on the model's dynamics, analyzing bifurcation diagrams and the presence of multistability. Moreover, the investigation extends to the collective behavior of coupled memristive neural maps with electrical, chemical, and magnetic connections. The synchronization of these coupled memristive maps is examined, revealing that chemical coupling exhibits a broader synchronization area. Additionally, diverse chimera states and cluster synchronized states are identified and discussed.

3.
Chaos ; 33(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967263

RESUMO

This paper studies the effects of a switching parameter on the dynamics of a multistable laser model. The laser model represents multistability in distinct ranges of parameters. We assume that the system's parameter switches periodically between different values. Since the system is multistable, the presence of a ghost attractor is also dependent on the initial condition. It is shown that when the composing subsystems are chaotic, a periodic ghost attractor can emerge and vice versa, depending on the initial conditions. In contrast to the previous studies in which the attractor of the fast blinking systems approximates the average attractor, here, the blinking attractor differs from the average in some cases. It is shown that when the switching parameter values are distant from their average, the blinking and the average attractors are different, and as they approach, the blinking attractor approaches the average attractor too.

4.
Front Comput Neurosci ; 17: 1248976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720251

RESUMO

Simplicial complexes are mathematical constructions that describe higher-order interactions within the interconnecting elements of a network. Such higher-order interactions become increasingly significant in neuronal networks since biological backgrounds and previous outcomes back them. In light of this, the current research explores a higher-order network of the memristive Rulkov model. To that end, the master stability functions are used to evaluate the synchronization of a network with pure pairwise hybrid (electrical and chemical) synapses alongside a network with two-node electrical and multi-node chemical connections. The findings provide good insight into the impact of incorporating higher-order interaction in a network. Compared to two-node chemical synapses, higher-order interactions adjust the synchronization patterns to lower multi-node chemical coupling parameter values. Furthermore, the effect of altering higher-order coupling parameter value on the dynamics of neurons in the synchronization state is researched. It is also shown how increasing network size can enhance synchronization by lowering the value of coupling parameters whereby synchronization occurs. Except for complete synchronization, cluster synchronization is detected for higher electrical coupling strength values wherein the neurons are out of the completed synchronization state.

5.
Entropy (Basel) ; 25(9)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37761651

RESUMO

Studying simple chaotic systems with fractional-order derivatives improves modeling accuracy, increases complexity, and enhances control capabilities and robustness against noise. This paper investigates the dynamics of the simple Sprott-B chaotic system using fractional-order derivatives. This study involves a comprehensive dynamical analysis conducted through bifurcation diagrams, revealing the presence of coexisting attractors. Additionally, the synchronization behavior of the system is examined for various derivative orders. Finally, the integer-order and fractional-order electronic circuits are implemented to validate the theoretical findings. This research contributes to a deeper understanding of the Sprott-B system and its fractional-order dynamics, with potential applications in diverse fields such as chaos-based secure communications and nonlinear control systems.

6.
J Theor Biol ; 572: 111591, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37543300

RESUMO

Synchronization of interconnecting units is one of the hottest topics many researchers are interested in. In addition, this emerging phenomenon is responsible for many biological processes, and thus, the synchronization of interacting neurons is an important field of study in neuroscience. Employing the memristive Chialvo (mChialvo) neuron map, this paper investigates the effect of electrical, inner-linking, chemical, and hybrid coupling functions on the synchronization state of a neuronal network with regular structure. Master stability function (MSF) analysis is performed to obtain the necessary conditions for synchronizing the built networks. Afterward, the MSF-based results are confirmed by calculating the synchronization error. Besides, the dynamics of the synchronous neurons are discussed based on the bifurcation analysis. Our results suggest that, compared to the electrical and inner-linking functions, chemical synapses facilitate mChialvo neurons' synchronization since the neurons can achieve synchrony with a negligible chemical coupling strength. Further studies reveal that based on the active synapses, coupled mChialvo neurons can reach cluster synchronization, chimera state, sine-like synchronization, phase synchronization, and cluster phase synchronization.

7.
J Child Adolesc Psychiatr Nurs ; 36(4): 269-277, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37157949

RESUMO

PROBLEM: Via a network analysis approach, following 2 weeks of the medication Ritalin, the present study investigated the quality of symptom interactions and the pattern of behavior changes to identify locations of functional weaknesses in the network interactions of symptomology. METHODS: Ritalin® prescribed for 112 children (aged 4-14) with attention deficit hyperactivity disorder (ADHD) as diagnosed by five child and adolescent psychiatrists. Their parents completed Swanson, Nolan, and Pelham-IV questionnaire (SNAP-IV) before and after Ritalin® onset as the pre and post-test, respectively. Then, the network analysis approach was used to discover the pattern of changes in symptom interactions. FINDINGS: The results indicated that in 2 weeks following its initiation, Ritalin significantly reduced restlessness and interactions between symptoms of impulsivity. "Inability to follow instructions" and "difficulty waiting their turn" symptoms were the most central symptoms of strength. Three symptoms, "Often has difficulty waiting their turn," "runs and climbs in situations where it is inappropriate" and "does not follow through on instructions," had the most expected influence. In the 14-day period of investigation, Ritalin® was effective in breaking some interactions and components of ADHD, but no significant mitigation of other components of the detected symptomatology network. CONCLUSION: Follow-up investigations using network analysis can clarify the dynamics of the network changes after initiation of medications.

8.
PLoS One ; 18(4): e0283757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018231

RESUMO

One of the famous economic models in game theory is the duopoly Stackelberg model, in which a leader and a follower firm manufacture a single product in the market. Their goal is to obtain the maximum profit while competing with each other. The desired dynamics for a firm in a market is the convergence to its Nash equilibrium, but the dynamics of real-world markets are not always steady and can result in unpredictable market changes that exhibit chaotic behaviors. On the other hand, to approach reality more, the two firms in the market can be considered heterogeneous. The leader firm is bounded rationale, and the follower firm is adaptable. Modifying the cost function that affects the firms' profit by adding the marginal cost term is another step toward reality. We propose a Stackelberg model with heterogeneous players and marginal costs, which exhibits chaotic behavior. This model's equilibrium points, including the Nash equilibrium, are calculated by the backward induction method, and their stability analyses are obtained. The influence of changing each model parameter on the consequent dynamics is investigated through one-dimensional and two-dimensional bifurcation diagrams, Lyapunov exponents spectra, and Kaplan-Yorke dimension. Eventually, using a combination of state feedback and parameter adjustment methods, the chaotic solutions of the model are successfully tamed, and the model converges to its Nash equilibrium.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Comércio , Teoria dos Jogos , Modelos Econômicos , Algoritmos
9.
Chaos ; 33(3): 033139, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003805

RESUMO

In this paper, we propose a time-varying coupling function that results in enhanced synchronization in complex networks of oscillators. The stability of synchronization can be analyzed by applying the master stability approach, which considers the largest Lyapunov exponent of the linearized variational equations as a function of the network eigenvalues as the master stability function. Here, it is assumed that the oscillators have diffusive single-variable coupling. All possible single-variable couplings are studied for each time interval, and the one with the smallest local Lyapunov exponent is selected. The obtained coupling function leads to a decrease in the critical coupling parameter, resulting in enhanced synchronization. Moreover, synchronization is achieved faster, and its robustness is increased. For illustration, the optimum coupling function is found for three networks of chaotic Rössler, Chen, and Chua systems, revealing enhanced synchronization.

10.
Chaos ; 33(3): 033103, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003834

RESUMO

Achieving a network structure with optimal synchronization is essential in many applications. This paper proposes an optimization algorithm for constructing a network with optimal synchronization. The introduced algorithm is based on the eigenvalues of the connectivity matrix. The performance of the proposed algorithm is compared with random link addition and a method based on the eigenvector centrality. It is shown that the proposed algorithm has a better synchronization ability than the other methods and also the scale-free and small-world networks with the same number of nodes and links. The proposed algorithm can also be applied for link reduction while less disturbing its synchronization. The effectiveness of the algorithm is compared with four other link reduction methods. The results represent that the proposed algorithm is the most appropriate method for preserving synchronization.

11.
Math Biosci Eng ; 20(3): 4760-4781, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36896521

RESUMO

Human evolution is carried out by two genetic systems based on DNA and another based on the transmission of information through the functions of the nervous system. In computational neuroscience, mathematical neural models are used to describe the biological function of the brain. Discrete-time neural models have received particular attention due to their simple analysis and low computational costs. From the concept of neuroscience, discrete fractional order neuron models incorporate the memory in a dynamic model. This paper introduces the fractional order discrete Rulkov neuron map. The presented model is analyzed dynamically and also in terms of synchronization ability. First, the Rulkov neuron map is examined in terms of phase plane, bifurcation diagram, and Lyapunov exponent. The biological behaviors of the Rulkov neuron map, such as silence, bursting, and chaotic firing, also exist in its discrete fractional-order version. The bifurcation diagrams of the proposed model are investigated under the effect of the neuron model's parameters and the fractional order. The stability regions of the system are theoretically and numerically obtained, and it is shown that increasing the order of the fractional order decreases the stable areas. Finally, the synchronization behavior of two fractional-order models is investigated. The results represent that the fractional-order systems cannot reach complete synchronization.


Assuntos
Algoritmos , Neurônios , Humanos , Neurônios/fisiologia , Dinâmica não Linear , Fatores de Tempo , Encéfalo
12.
Math Biosci Eng ; 20(2): 3216-3236, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899578

RESUMO

Neural signatures of working memory have been frequently identified in the spiking activity of different brain areas. However, some studies reported no memory-related change in the spiking activity of the middle temporal (MT) area in the visual cortex. However, recently it was shown that the content of working memory is reflected as an increase in the dimensionality of the average spiking activity of the MT neurons. This study aimed to find the features that can reveal memory-related changes with the help of machine-learning algorithms. In this regard, different linear and nonlinear features were obtained from the neuronal spiking activity during the presence and absence of working memory. To select the optimum features, the Genetic algorithm, Particle Swarm Optimization, and Ant Colony Optimization methods were employed. The classification was performed using the Support Vector Machine (SVM) and the K-Nearest Neighbor (KNN) classifiers. Our results suggest that the deployment of spatial working memory can be perfectly detected from spiking patterns of MT neurons with an accuracy of 99.65±0.12 using the KNN and 99.50±0.26 using the SVM classifiers.


Assuntos
Algoritmos , Memória de Curto Prazo , Aprendizado de Máquina , Máquina de Vetores de Suporte , Neurônios
13.
Math Biosci Eng ; 20(2): 3749-3767, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899603

RESUMO

Working memory has been identified as a top-down modulation of the average spiking activity in different brain parts. However, such modification has not yet been reported in the middle temporal (MT) cortex. A recent study showed that the dimensionality of the spiking activity of MT neurons increases after deployment of spatial working memory. This study is devoted to analyzing the ability of nonlinear and classical features to capture the content of the working memory from the spiking activity of MT neurons. The results suggest that only the Higuchi fractal dimension can be considered as a unique indicator of working memory while the Margaos-Sun fractal dimension, Shannon entropy, corrected conditional entropy, and skewness are perhaps indicators of other cognitive factors such as vigilance, awareness, and arousal as well as working memory.


Assuntos
Memória de Curto Prazo , Córtex Visual , Memória de Curto Prazo/fisiologia , Fractais , Neurônios/fisiologia , Encéfalo , Córtex Visual/fisiologia
14.
Phys Rev E ; 107(1-1): 014201, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797861

RESUMO

A long-standing expectation is that two repulsively coupled oscillators tend to oscillate in opposite directions. It has been difficult to achieve complete synchrony in coupled identical oscillators with purely repulsive coupling. Here, we introduce a general coupling condition based on the linear matrix of dynamical systems for the emergence of the complete synchronization in pure repulsively coupled oscillators. The proposed coupling profiles (coupling matrices) define a bidirectional cross-coupling link that plays the role of indicator for the onset of complete synchrony between identical oscillators. We illustrate the proposed coupling scheme on several paradigmatic two-coupled chaotic oscillators and validate its effectiveness through the linear stability analysis of the synchronous solution based on the master stability function approach. We further demonstrate that the proposed general condition for the selection of coupling profiles to achieve synchronization even works perfectly for a large ensemble of oscillators.

15.
J Theor Biol ; 560: 111381, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36528091

RESUMO

Measuring the phase synchronization between different brain regions in functional brain networks is a common approach to investigate many psychological disorders such as Attention Deficit Hyperactivity Disorder (ADHD). The emotional processing deficit in ADHD children is one of the main obstacles in their social interactions. In this study, the nonlinear Correlation between Probability of Recurrences (CPR) method is used for the first time to construct functional brain networks of 22 boys with ADHD and 22 healthy ones during watching four visual-emotional stimuli types. Topological features of brain networks, including shortest path length, clustering coefficient, and nodes strengths, are investigated in groups of ADHD and healthy. The results indicate a significantly (P-Values < 0.01) greater average clustering coefficient and lower shortest path length in the brain networks of ADHD individuals than the healthy ones. Accordingly, in the ADHD brain networks, the information exchange in both local and global scales is abnormally more than the healthy ones, leading to a hyper-synchronization in this group. The topological alterations of ADHD brain networks are mainly observed in the brain's frontal and occipital lobes, indicating impaired brain function of this group in emotional and visual processing. This survey demonstrates that the CPR method can be a good candidate for distinguishing the phase interactions of ADHD and healthy brain networks. Therefore, this study can contribute to further insights into the nonlinear dynamics analysis of brain networks in ADHD individuals.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Masculino , Humanos , Criança , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Imageamento por Ressonância Magnética , Encéfalo , Emoções , Rede Nervosa , Vias Neurais
16.
Entropy (Basel) ; 24(12)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36554212

RESUMO

The dynamical interplay of coupled non-identical chaotic oscillators gives rise to diverse scenarios. The incoherent dynamics of these oscillators lead to the structural impairment of attractors in phase space. This paper investigates the couplings of Lorenz-Rössler, Lorenz-HR, and Rössler-HR to identify the dominant attractor. By dominant attractor, we mean the attractor that is less changed by coupling. For comparison and similarity detection, a cost function based on the return map of the coupled systems is used. The possible effects of frequency and amplitude differences between the systems on the results are also examined. Finally, the inherent chaotic characteristic of systems is compared by computing the largest Lyapunov exponent. The results suggest that in each coupling case, the attractor with the greater largest Lyapunov exponent is dominant.

17.
Chaos ; 32(8): 083111, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36049920

RESUMO

We revisit the laser model with cavity loss modulation, from which evidence of chaos and generalized multistability was discovered in 1982. Multistability refers to the coexistence of two or more attractors in nonlinear dynamical systems. Despite its relative simplicity, the adopted model shows us how the multistability depends on the dissipation of the system. The model is then tested under the action of a secondary sinusoidal perturbation, which can remove bistability when a suitable relative phase is chosen. The surviving attractor is the one with less dissipation. This control strategy is particularly useful when one of the competing attractors is a chaotic attractor.

18.
Chaos ; 32(6): 063139, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778131

RESUMO

There is not a single species that does not strive for survival. Every species has crafted specialized techniques to avoid possible dangers that mostly come from the side of their predators. Survival instincts in nature led prey populations to develop many anti-predator strategies. Vigilance is a well-observed effective antipredator strategy that influences predator-prey dynamics significantly. We consider a simple discrete-time predator-prey model assuming that vigilance affects the predation rate and the growth rate of the prey. We investigate the system dynamics by constructing isoperiodic and Lyapunov exponent diagrams with the simultaneous variation of the prey's growth rate and the strength of vigilance. We observe a series of different types of organized periodic structures with different kinds of period-adding phenomena. The usual period-bubbling phenomenon is shown near a shrimp-shaped periodic structure. We observe the presence of double and triple heterogeneous attractors. We also notice Wada basin boundaries in the system, which is quite rare in ecological systems. The complex dynamics of the system in biparameter space are explored through extensive numerical simulations.


Assuntos
Ecossistema , Vigília , Animais , Comportamento Predatório
19.
Phys Rev E ; 105(5-1): 054304, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706266

RESUMO

This paper studies the synchronization of a network with linear diffusive coupling, which blinks between the variables periodically. The synchronization of the blinking network in the case of sufficiently fast blinking is analyzed by showing that the stability of the synchronous solution depends only on the averaged coupling and not on the instantaneous coupling. To illustrate the effect of the blinking period on the network synchronization, the Hindmarsh-Rose model is used as the dynamics of nodes. The synchronization is investigated by considering constant single-variable coupling, averaged coupling, and blinking coupling through a linear stability analysis. It is observed that by decreasing the blinking period, the required coupling strength for synchrony is reduced. It equals that of the averaged coupling model times the number of variables. However, in the averaged coupling, all variables participate in the coupling, while in the blinking model only one variable is coupled at any time. Therefore, the blinking coupling leads to an enhanced synchronization in comparison with the single-variable coupling. Numerical simulations of the average synchronization error of the network confirm the results obtained from the linear stability analysis.

20.
Cogn Neurodyn ; 16(1): 91-100, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35126772

RESUMO

Attention Deficit Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder that, in addition to inattention, excessive activity, or impulsivity, makes it difficult for children to process facial emotions and thus to interact with their peers. Here we analyze neuronal networks of children with this disorder by means of the phase-locking value (PLV) method. In particular, we determine the level of phase synchronization between 62 EEG channels of 22 healthy boys and 22 boys with ADHD, recorder whilst observing facial emotions of anger, happiness, neutrality, and sadness. We construct neuronal networks based on the gamma sub-band, which according to previous studies, shows the highest response to emotional stimuli. We find that the functional connectivity of the frontal and occipital lobes in the ADHD group is significantly (P-value < 0.01) higher than in the healthy group. More functional connectivity in these lobes shows more phase synchronization between the neurons of these brain regions, representing some problems in the brain emotional processing center in the ADHD group. The shortest path lengths in these lobes are also significantly (P-value < 0.01) higher in the ADHD group than in the healthy group. This result indicates less efficiency of information transmission and segregation in occipital and frontal lobes of ADHD neuronal networks, responsible for visual and emotional processing in the brain, respectively. We hope that our approach will help obtain further insights into ADHD with methods of network science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...